更多精彩
当前位置: 首页 > 古水文学 > >正文

小学奥数牛吃草问题专题练习_小学奥数

时间:2018-06-01 来源:其身不正网
 

以下是无忧考网为大家整理的关于小学奥数牛吃草问题专题练习的文章,供大家学习参考!
在小学这类问题常用到四个基本公式,分别是:
  (1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);

  (2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;

  (3)吃的天数=原有草量÷(牛头数-草的生长速度);

  (4)牛头数=原有草量÷吃的天数+草的生昆明军海癫痫病医院地址长速度。

  这四个公式是解决牛吃草问题的基础。一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

  例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。如果有牛21头,几天能把草吃尽?

  摘录条件:

  27头 6天 原有草+6天生长癫痫治疗医院

  23头 9天 原有草+9天生长草

  21头 ?天 原有草+?天生长草

  小学解答:解答这类问题关键是要抓住牧场青草总量的变化。设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15

  现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃南方医科大学南方医院癫痫科预约电话。由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?

  (27-15)×6=72

  那么:第一次吃草量27×6=162第二次吃草量23×9=207

  每天生长草量45÷3=15

  原有草量(27-15)×6=72或162-15×6=72

  21头牛分两组,15头去吃生长的通辽癫痫病治疗贵吗草,其余6头去吃原有的草那么72÷6=12(天)

  初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

  那么可以列方程:

  x+6y=27×6

  x+9y=23×9

  解得x=72,y=15

  若放21头牛,设n天可以吃完,则:

  72+15n=21n

  n=12

推荐阅读

热门阅读